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Robust Compliant Motion for  Manipulators,  Part 11: 
Design Method 

Abstruct-A controller  design  methodology  to  develop  a  robust 
compliant  motion for  robot  manipulators is described.  The  achievement 
of the  target  dynamics  (the  target  impedance is introduced in Part I) and 
preservation  of  stability  robustness  in  the  presence of bounded  model 
uncertainties  are  the  key  issues  in  the  design  method.  St.ate-feedback  and 
force-feedforward  gains  are  chosen  to  guarantee  the  achievement of the 
target  dynamics, while preserving  stability in  the presence of the  model 
uncertainties. In general,  the  closed-loop  behavior of a  system  cannot be 
shaped  arbitrarily  over an arbitrarily  wide  frequency  range.  It is proved 
that  a special  class of impedances  that represent our  set of performance 
specifications are  mathematically  achievable  asymptotically  through 
state-feedback  and  interaction-force  feedforward  as  actuator  bandwidths 
become  large, and we offer  a  geometrical  design  method for achieving 
them in the  presence  of  model  uncertainties. The design  method  reveals  a 
classical  trade-off  between  a  system's  performance  over  a  bounded 
frequency  range  and  its  stability  relative to model  uncertainties via 
multivariable  Nyquits  criteria.  Two  classes of such  uncertainties  are  dealt 
with.  While  the  first  class  of  model  uncertainties is formed  from  the 
uncertainties  in  the  parameters of the  modeled  dynamics,  the  high- 
frequency  unmodeled  dynamics form  the second  class of model  uncer- 
tainties. The  multivariable Nyquist  criterion is used to examine  trade-offs 
in  stability  robustness  against  approximation of desired  target  impe- 
dances  over  bounded  frequency  ranges. 

I. INTRODUCTION 

T HE  TARGET DYNAMICS 

~ D ( s )  = ( K +  CS+ Js2)6 Y(s ) ,  

s = j w ,  SY(s)  and 6D(s) E Rfl (1) 

G,(s )  = ( K +  CS+ Js2)-' 

describe the closed-loop  behavior for the manipulator. J ,  C, 
and K are n x n real-valued nonsingular  matrices selected  to 
parameterize the  set  of performance specifications (stiffness, 
wo, and stability given  in Part I.) GD(jw) and GY(j0)  are n X 
1 vectors of deviation of the interaction force' and  the 
interaction-port position from  equilibrium  value in the global 
Cartesian frame. In this paper (Js2 + Cs + K )  is called the 
target impedance. 

Although  in general the closed-loop  behavior of a system 

Manuscript received August 26, 1985; revised February 6, 1986. 
H. Kazerooni  is  with  the University of Minnesota, Mechanical Engineering 

P. K. Houpt  is  with the General Electric, Corporate Research and 

T. B. Sheridan is  with the Massachusetts Institute of Technology, 

IEEE Log Number 8608271. 
' In this paper force implies force and torque and position implies position 

Department, Minneapolis, MN 55455, USA. 

Development, Schenectady, NY 12345, USA. 

Mechanical Engineering Department, Cambridge, MA 02139, USA. 

and orientation. 

cannot  be shaped arbitrarily over  an arbitrary frequency  range, 
our  goal is to make the manipulator  behave  according to (1) for 
all 0 < w < wo. Construction of the eigenstructure of the 
manipulator  according to the eigenstructure of the target 
dynamics (given  in Part I) is the first step in our  design 
method.  There  are two issues of concern in this step.  The first 
issue addresses the achievement of the eigenstructure of the 
target dynamics; there is  no a priori guarantee that the 
eigenstructure of the manipulator  can be constructed  according 
to the eigenstructure of  the target dynamics.  This limitation in 
the construction of  the eigenstructure is explained in Section 
111. The  second issue concerns the achievement of the target 
dynamics for some bounded frequency range. Normally, the 
construction of the eigenstructure of the manipulator  accord- 
ing to that of the target dynamics  does not guarantee that the 
closed-loop  manipulator  behaves  dynamically as (1) for all 0 
< w < wo. These  two issues are answered in Section III. We 
will prove that  the eigenstructure of the target dynamics is 
achievable. The  achievement of the eigenstructure of the target 
dynamics is made possible by the appropriate  choice of the 
target dynamics.  We also prove that  the achievement of the 
eigenstructure of the target dynamics is required to guarantee 
that  the closed-loop  system will behave  dynamically  as (1) for 
all 0 < w < wo. 

If ui is the right eigenvector of the target dynamics in the 
joint-angle coordinate  frame, then from Part I: 

The 2n eigenvectors of (2) form a 2n x 2n matrix V: 

V is a basis for the state-space representation of the target 
dynamics in the joint-angle coordinate  frame. V shows how 
the desired modes are  coupled  among the states of  the target 
dynamics.  The 2n eigenvalues resulting from (3) are invariant 
under any linear transformation and form a self-conjugate 
constant  set A = {hi: i = 1, 2 ,  * e - ,  2n). A and Vtaken 
together describe the eigenstructure of the desired impedance 
in the joint-angle coordinate  frame. 

11. DYNAMIC MODEL OF THE MANIPULATORS 
We  present a dynamic model for a  manipulator with 

actuators suitable for impedance control. We  consider two 
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classes of uncertainties in the modeling of the manipulator: the 
uncertainties in the parameters of the modeled dynamics and 
high-frequency unmodeled dynamics. 

A. Mathematical Modeling 
Equation (5) describes the dynamic behavior of the manipu- 

lators [8], [SI, [19]: 

M(B>&t)+Pg(B, d)+Fg(B)=F(t) ,  

O(t), Pg(B, e) ,  Fg(t) and F ( t )  E Rn. ( 5 )  

Vector F(t)  = (fl(t), 9 * * ,  fn(t)IT represents the generalized 
force. The n-dimensional vectors Pg(B, e )  and Fg(B) are 
gyroscopic and gravitational forces, respectively. M(B) is the 
symmetric, positive definite, inertia matrix of the manipulator. 
In most constrained manipulations, the motion of a manipula- 
tor is very slow; the system operates at “near stall” 
conditions, mostly because of dynamic and kinematic con- 
straints. For example, in grinding and  metal cutting, the state 
of the art in current technology is the limiting factor in the 
speed of such operations. The orders of magnitude of the 
gyroscopic terms are much smaller than the inertia and the 
gravity terms in constrained maneuvers; this suggests the 
elimination of the gyroscopic terms from the differential 
equations of the motion. This elimination is mathematically 
equivalent to the linearization of the gyroscopic terms in the 
neighborhood of  an equilibrium point (zero velocity). This 
point is characterized by the vector Bo. At this stage, the 
assumption that the manipulator moves slowly does not  imply 
any specific restraint on the inputs to (5). In general, there is 
no unique characterization associated with the inputs that can 
generate large-velocity terms. The above assumption rejects 
all inputs that could give rise to velocity terms. We will clarify 
the conditions on the inputs that will guarantee small veloci- 
ties. At this stage, it is sufficient to assume that all velocity 
terms are close to zero. This automatically ensures that the 
inputs to (5)  will satisfy the conditions. Fg(Bo) = Fo is true at 
equilibrium. If M(t)  is the perturbation of the generalized 
coordinate from Bo and 6F(t) is the perturbation of the 
generalized force from Fo, then the linearized equation of 
motion is 

M(Bo)6d(t) + GR (&)SO( t )  = 6F(  t ) ,  

6 F ( f )  and 6B( t )  E R n  (6) 

where GR(Bo) is an n X n matrix that can be computed from 
the following equation: 

(7) 

Since the velocity terms in Pg(O, e )  are of the form 8j(t)2 or 
ei(t)dj(t), the linearized form of the gyroscopic terms around 
the equilibrium point Bo( t )  vanish from the linearized equa- 
tions. Note that the target dynamics are also expressed at 
equilibrium point. M(Bo) and GR(Bo) are functions of the 
configuration of the system, and  they change once the 

manipulator moves from one point to another point. We plan 
to update M(Bo) and GR(Oo) as 00 changes. Equation (6) 
represents the dynamic behavior of a manipulator when  its 
motion is slow. Gravity and the inertia of the system are two 
effects that practitioners always observe in the behavior of the 
manipulators at low speeds; gravity dominates the motion of 
the system at very low frequencies, while inertia affects the 
behavior of the system in the higher frequency range. The 
generalized force 6F(t) can be expressed by 

6F( t )=  TS6T(t)+J,TGD(t) (8) 

where 6T(t) = (6tl(t), . . . , 6tn(t))T and 6D(t) = (6dl(t), e ,  

6dfl(t)) are the perturbation of the interaction force in the 
global coordinate frame and the perturbation of the actuator 
torques, respectively. T, is a nonsingular square matrix which 
represents the effect of 6T(t) on the coordinates. If the 
coordinates are independently driven by actuators, then T, = 
Ifln. An example of a nonunity T, arises when 6O(t) is 
measured absolutely while some actuators are not driving the 
joint angles from a stationary base. Substituting (8) in (6) 
yields (9) for  the linearized dynamics of the manipulators: 

M(Oo)Se( t )  + GR (Oo)6B( t )  = Ts6 T( t )  + J:SD( t )  (9) 

where 6O(t) = (6BI( t ) ,  e ,  60f l ( t ) )T  expresses the perturbed 
joint-angles. Equation (10) approximates the dynamic behav- 
ior of each actuator. Thus 

6 t i (  t )  
-+6t;(t)=6u;(t), i = l ,  2, 0 1 . )  n. (10) 

X,; 

6u;(t) and 6t i ( t )  are input force and output-torque perturbation 
for each actuator, respectively. X,; is the bandwidth of each 
actuator. Equation (10) is scaled to produce one unit of torque 
for each unit of input at equilibrium. Such scaling is common 
and can always be compensated for at the end of the design 
procedure by adjusting the open-loop transfer function matrix. 
Note that (10) is only an approximation of the dynamics of an 
actuator, which has been  widely  used by practitioners (20). 
One may equally choose higher order dynamics for actuators 
which will cause A,  to be  of higher dimensions. The set of 
differential equations describing the actuation of the manipula- 
tor is approximated by 

6ii’(t)=Aa6T(t)+B,6U(f) (1 1) 

where 

A,=diag ( - X a l ,  - X a 2 ,  a * . ,  - X a n )  

B,=diag (X,I,  X,, - e * ,  A,) 

su ( t )=(6u l ( t ) ,  6u2(t) * * * ,  6un(tNT 

6T(t)=(6t1(t), 6 t z ( t )  * - - ,  6t f l ( t ) )T .  

Combining (9) and (1 1) yields (12) for the dynamics of the 
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manipulator and the actuators: 

~ f l n   ~ t l n  wo 
- On, A, 6T(t)  t )  ) GR (00) On, M-'(O) T, )( 
6X( t )  A 

- 
6X(t) 

r?u ----.cu-- 

B L 

If N = (I,,,, On, On,), then 

6tir(t)=AGX(t)fB6LI(I)3.LGD(t) (13) 

SO( f )  = H6X( t )  (14) 

where 6X(t) E R3"; 6U(t), 6D(t) and M(t) E W"; ( A ,  B) is a 
controllable pair; and (A, H )  is an observable pair. 

Generally  speaking, if the bandwidths  of  the actuators are' 
much greater than wo in all directions, then the actuator 
dynamics can  be neglected in dynamic  equation (12). Neglect- 
ing all actuator dynamics results in 2n-state differential 
equations for the manipulator.  Conversely, if an actuator 
bandwidth  is smaller than wo in a given direction, then the 
actuator dynamics cannot be neglected. Matrix A has 2n 
eigenvalues associated  with  the manipulator  dynamics and n 
eigenvalues  describing the actuator's bandwidth. If the trans- 
fer function matrix that  maps 6U( jo) to 6O(jo) is G,(jw), 
then M ( j w )  = Gp(jw)6U(jw>, where 

G p ( j ~ ) = H ( j ~ Z ~ n 3 n - A ) - 1 B .  (15) 

The  mathematical model given by (12) is a fair approxima- 
tion  of  the nonlinear  dynamics  represented by (5) as long as 
SU(t) and 6D(t) are bounded  in magnitude and frequency. 
Equation (12) is the linearized version of a set of nonlinear 
differential equations in the neighborhood of an arbitrary zero- 
velocity operating point. The model  is therefore valid as long 
as the velocity terms  are close to zero. The  smaller the 
magnitude  of the inputs, the closer the model  will be to reality 
because small inputs result in small velocities as long as the 
frequency  range of operation of the inputs is  bounded.  Note 
that by confining the frequency  range of 6D(t) and 6U(t) to all 
0 < w < wo and the magnitudes  of 6U(t) and 6D(t)  to very 
small values, a  designer  can eliminate all inputs that  could give 
rise to significant joint-angle velocities. 

B. Model Uncertainties 

Even though some mathematical  models  reliably represent 
the dynamics of a  manipulator, no  nominal  model  can imitate a 
manipulator  completely. No mathematical  model  is more than 
an approximation of reality; none is  absolutely true. The 
mathematical model given by (12) will  yield a rational 
approximation of the dynamics of manipulators for a certain 
range  of inputs (6U(t) and 6D(t)), which  is  bounded  in 
magnitude  andfrequency. Outside this range, the model  will 

depart  from reality. The difference in behavior between the 
model  and the real system in various  operating  regions must be 
taken into account  through a meaningful  mathematical method 
that allows for differences between ideal and  real systems. 
Such discrepancies are called model uncertainties. Let Gd(Jo) 
represent the true dynamics of the manipulator. Satisfying the 
condition on the input magnitudes, (16) can  be written to show 
the relationship between the  nominal  model G p ( j y )  and the 
true dynamics G, l ( jw )  by means of E ( j w )  [14], [l]. Thus2 

G6 ( j ~ )  = G p ( j U ) ( I n n  +E(j@))  (1 6) 

umax(E(jw))<e(w),  for all w 2 0. (1 7) 

E ( j w )  is called the unstructured model uncertainty because 
(16) does not imply  any mechanism or structure that gives rise 
to E ( j w ) .  e(@)  is a positive scalar function, which confines 
G ; ( j w )  to a neighborhood of G J j w )  with magnitude e(o). 
We assume that Gd( j w )  in (16) remains  a strictly proper, finite 
system.  We also assume that G d ( j w )  has the same  number of 
unstable modes as Gp( j w ) .  The unstable modes of G,(jw) 
and G d ( j w )  need  not be identical. Therefore, E ( j w )  may  be 
an  unstable operator. When (16) is used to represent  various 
unmodeled dynamics of manipulators, the limiting function 
e(w) has the form  shown in Fig. 1. e(w) is a bound for 
unstructured uncertainties. It is nonzero for all frequencies. 

e(w) is  usually smaller than  unity  at  low frequencies and 
increases to unity  and above at high frequencies. High- 
frequency  dynamics caused by time delays, electrical reso- 
nances, structure dynamics, etc., always exist but are ne- 
glected. This  causes (12) to significantly contradict reality  at 
high frequencies. 

Lack of knowledge  about the precise inertia matrix, the size 
of the inputs, the effects of perturbations from  operating 
points, nonlinearities such as saturation, etc.,  give rise to  an 
e(w) at all frequencies, while high-frequency unmodeled 
dynamics contribute significantly to the magnitude of e@) at 
high frequencies. Saturation is inherently nonlinear but can be 
modeled as open-loop gain reduction  for all frequencies. Since 
e@) assumes  a single worst-case  magnitude applicable in  all 
directions, it is helpful to determine the slowest unmodeled 
mode  in  rhe manipulator. Let the frequency  range associated 
with this mode be w,. A good estimation of w, allows the 
designer to determine the frequency  range for which  the  model 
is nearly valid. (No model is absolutely valid.) This estimation 
is necessary because it is meaningless  to  consider (1) as 
an expression of the target dynamics for all 0 < w < wa when 
the frequency  range for which the model  can be trusted is 
unknown. Models  must  be nearly valid for the entire fre- 
quency range  through which the target dynamics  are expected 
to occur, Le., wo < w,. Fig.1 shows the relative sizes of w, 
and wo. The  upper bound for wo can be selected from  equation 
o, = cwo where c is a  constant  number whose size depends on 

The maximum singular value of E ( j w )  is defined as 

.,,.,[E(jw)]= max - IIE(j4xll 
I1 x I1 

where x # 0, and 11. 11 denotes the Euclidean  norm (4). 
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Fig. 1 e(w) is a conservative and  educated  guess  about the difference in 
model of the system  and the real  system. 

the damping of the unmodeled mode. A well-damped  unmo- 
deled mode requires a small c (perhaps somewhere between 
five and ten), while an underdamped mode requires a large c 
(could  be as  large as 100). The value of w, and a conservative 
guess for c assign an upper bound for wo. To meet stability 
robustness specifications, it is necessary to have a conserva- 
tive guess for e(o) for all 0 < w < 03. This is because our 
stability robustness test is a sufficient condition which  must  be 
satisfied for all 0 < w < 03 [14]. Experience, a good 
understanding of the system, and high-performance experi- 
mental equipment will enable a designer to make a good guess 
as to the magnitude of e(o) for a wide frequency range. e(w) is 
an educated guess about the difference between the model of 
the system and the real system, which  must be supplied by the 
designer.  Here we assume that a conservative guess for e(w) is 
given, along with (12), to represent the model uncertainty in 
the system. To recapitulate, the model in (12) is considered 
nearly valid as long as the following conditions are satisfied. 

1) 6D(t) and 6U(t) must contain components whose 
frequency spectra are less than wo.  wo must be selected so that 
wo < a,. This is because of the significant difference between 
the model and the reality of the system for w, < w < 03. 

2) 6D(t) and 6U(t) must  be small enough in magnitude to 
meet the linearization conditions. (In theory, 6D(t) and 6U(t) 
must approach zero.) 

111. COMPENSATOR DESIGN 
This section presents a controller design technique that 

guarantees manipulators represented by dynamic (12) will 
behave dynamically like (1) for all 0 < w < wo. Since we  plan 
to shape a frequency-domain relationship between 6D( j w )  and 
6 Y ( j w ) ,  we  must  not consider the dependence of SD(t) on the 
dynamics of the environment in this analysis. This allows us to 
preserve 6D( j w )  so we  can arrive  at  a relationship between 
6D(jw)  and GY(jw).  It is assumed that all states 6X(t)  and 
interaction forces 6D(t) in (12) can be measured. The states of 
the system are  joint-angles, joint-angle rates, and actuator 
torques. There are no acceleration measurements. Suppose the 

control law in (13) is chosen so that 

s U ( t ) =  -GGX(t)+GdSD(t) (1 8) 

where G = n X 3n, and Gd = n x n. Substituting SU(t) in 
( 13) yields 

6k(t)=(A-BG)GX(t)+(L+BGd)GD(t) (19) 

e( t )  = H6X( t )  (20) 

Fig. 2 shows the closed-loop system. Gd can  be considered a 
feedfonvard gain and not feedback gain. This is true in our 
treatment of force measurement, and Gd does not affect the 
stability of the closed-loop system. Even though 6D(t) can be 
expressed as  a function of the dynamics of the environment, in 
this section we  must ignore this dependence so we can arrive at 
a relationship between 6 Y ( j w )  and 6D( j w )  in the frequency 
domain. The state-feedback gain G and the force-feedforward 
gain Gd are designed to guarantee that the three transformation 
matrices (A - BG), (L + BGd), and H i n  (19)  and (20) result 
in the same transfer-function matrix in the global coordinate 
frame as the target impedance, which is expressed in (1). In 
other words, if G,.(jw) represents a mapping from the 
interaction force 6D(jw)  to the joint angles 68( j w ) ,  then the 
objective is to design G and Gd so that (21) is satisfied for all 0 
< w < wo, while the stability robustness specifications are 
also guaranteed. GD(j0) is measured in the global coordinate 
frame, so 

JcGcOw) = G,(jw) (21) 

where 

J,G,l(jw) represents the transfer-function matrix that  maps 
the interaction force 6D( j w ) ,  to the end-point position 
6Y( jo)  in the global coordinate frame. 

A. State-Feedback Design 
G is designed to guarantee the eigenstructure represented 

by V and A and the stability robustness specification. The 
complex number si and the complex vector ui which  satisfy 
(22), are the closed-loop eigenvalue and the right closed-loop 
eigenvector of (19). Thus 

siu,=(A-BG)ui, ui#03., i = l ,  2, e . . ,  3n (22) 

where ui is a 3n x 1 vector.  For convenience, matrix U is 
formed such that it contains all right closed-loop eigenvectors 
u; as its columns, and a self-conjugate set S is formed such  that 
it contains all closed-loop eigenvalues as its members: 

The objective is to design G so that ( A  - BG) contains the 
eigenstructure represented by A and I/. Aside from the case of 
a single input system, the specification of closed-loop eigen- 
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Fig. 2. Closed-loop system. 

values does not  uniquely define G. The  source of  nonunique- 
ness  is  the freedom offered by state feedback, beyond 
eigenvalue  assignment, in selecting the associated right 
closed-loop  eigenvectors (or left closed-loop eigenvectors) and 
generalized  eigenvectors  from  an  allowable sub-space. Arbi- 
trary eigenvector  assignment in general is  not possible. Each 
closed-loop  eigenvector is confined to an  allowable  subspace. 
This  allowable  sub-space is given  in Sections III-A-1  and 2 .  
The restriction on the construction of the  closed-loop eigen- 
vectors simply implies that one  cannot specify all members of 
each right eigenvector arbitrarily. Only  some partitions of 
each  eigenvector in general can be  constructed  according to 
design specifications. A  unique  value for G is determined by 
the arbitrary pole-placement of S and by the eigenvector 
construction of U in the allowable  subspace [ 2 ] ,  [3], [12] ,  
[ I S ] - [  171. In  other  words, a unique value of G can  be designed 
so that  the following holds: 

the 2n dominant  closed-loop  eigenvalues in S are placed 
at locations assigned by A. The n remaining actuator 
eigenvalues are moved as far to the left as the stability 
robustness specifications will  allow (see Section III-C). 
U is constructed in the allowable  sub-space so that the 
dominant partition of U contains V. 

Since ui and ui belong to different spaces, it is  necessary to 
partition U. Here we describe the dominant partition of U and 
explain how U can  be  constructed such  that it contains V.  
Partitioning U yields 

where U,, = 2n x 2n, UI2 = 2n x n, U2, = n x 2n, and 
Uz2 = n X n. Assume also that U = (VI U2), where 

U1 is the set  of right closed-loop  eigenvectors associated  with 
the 2n dominant  closed-loop  eigenvalues  represented by A. U2 
is the set  of right closed-loop  eigenvectors associated  with the 
n actuator closed-loop eigenvalues. U,, shows the contribution 
of  the 2n dominant  closed-loop  eigenvalues to the manipulator 
states (&?(t), 8e(t)), while U2, shows the effect of the 2n 
dominant eigenvalues on the actuator states 6T(t). We 
construct U, such that U,, = V. In general, because of 
limitations on eigenstructure construction, a designer  cannot 
form the closed-loop  eigenvectors arbitrarily. But  in  this case, 
it is possible to construct U, so that VI, = V. In other words 
V, which  is  the set of right eigenvectors of the target dynamics 
of (l), is  in the allowable  subspace  determined by the open- 
loop  dynamics.  The existence of the right eigenvectors of the 

target impedance in the allowable  subspace  determined by the 
open-loop  dynamics  given by (13) is a significant factor in 
achieving the target impedance. If V were not  in the allowable 
sub-space, the achievement of V and A, and consequently the 
target dynamics of ( 1 )  would  not  be possible by state-feedback 
design. This  allowable  subspace is given in the sections to 
follow. Once Ul is constructed to be exactly like V ,  no choice 
will  remain  in constructing U2,. 

VI, shows the effect of  nondominant closed-loop eigen- 
values  on the manipulator states. U2, is the more significant 
partition of .U2 because it allows the achievement of the 
uncoupled closed-loop  dynamics for the actuators. Once U Z ~  is 
constructed  to  achieve the uncoupled  closed-loop  behavior for 
the actuators, no choice will remain in the construction of U12, 
This issue is explained in Section III-A-2. Because  of the 
mentioned limitation on the construction of the eigenvectors, 
only some partitions of the eigenvectors can be  constructed 
arbitrarily. Designers must construct those partitions of 
eigenvectors that have  a  more significant role in the closed- 
loop  behavior. In our case, VI, and U2, are more significant 
partitions. of UI and U2, respectively. The  exact construction 
of U,, and U22 and the placement of the 3n poles  of S are the 
free  choices that linear state-feedback control offers for 
achieving a unique gain, G. Sections III-A-1 and  III-A-2 
explain  how this freedom  can be used. 

1) Manipulator Eigenstructure: This section identifies 
how the manipulator eigenstructure can be constructed. Using 
(22),   (26) can  be written to  express the right closed-loop 
eigenvector ui associated with the 2n dominant eigenvalues. 
From (22) 

( s ~ I ~ , ~ ~ - A ) u ~ + B G u ~ = O ~ . ,  

i =  1, 2 ,  * * * ,  2n.   (26)  

Since si is selected from set A, then si = Xi .  Equation (26) can 
also be written as: 

((hiI3n3n-A) -B)(:i)=03n, i = l ,  2, " ' ,  2n 

(27) 

where mi = - Gu;. Equation (27) states that (u T m T) is in 
the  right  null-space  of [(X;13n3n - A )  - B ] .  Since the 
dimension of the right null-space of [(hi13n3n - A )  -B]  is at 
least n[20] ,  ( u r  mr)T is confined in an  n-dimensional 
subspace spanned by null vectors of [(hi 13n3n - A )  -B)].  
Because of this restriction on ( U T  not all members of ui 
can  be selected arbitrarily. ui must  be selected such  that ( U T  
r n T )  lies in the null-space of - A )  - B]. There is 
another way  of arriving at this confinement. If si does not 
belong to the spectrum of A ,  then (28) can  be generated  from 
(22): 

ui= - ( ~ i l T 3 ~ 3 ~ - A ) - ~ B G u ~ ,  i = l ,  2 ,  e . . ,  2n.   (28)  

Since si is selected from set A, then si = Xi.  ui can also be 
expressed by (29).  Thus 

Ui=(Xi13n3n-A)-1Bmi, i = l ,  2 ,  e . . ,  2n  (29) 
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m.= -Gu; (30) 

where mi is an n x 1  vector. Equation (29) mathematically 
justifies the limitation on the construction of the closed-loop 
eigenvector mentioned previously [7}. Each closed-loop eigen- 
vector ui associated with X; must reside in the column space 
of - A )  B ,  which is a function of the closed-loop 
eigenvalue hi and the open-loop dynamics of the manipulator 
(A,  B). This  is  an important constraint on the construction of 
the right closed-loop eigenvector u;, which  is trapped in the n- 
dimensional subspace established by columns of .- 

A )  - I B. Because of the confinement of ui in an n-dimensional 
subspace, in  general,  it  can  be expected that only n members 
of ui can be selected arbitrarily. But  we are interested in 
construction of uj such that its first 2n members are like u;. We 
show that a vector ui, (along with an mi) exists such  that 
(UT mT)T is in the null-space of - A )  - B] and  its 
first 2n members are the same as ui. Consider u; and mi given 
by 

u; = X,&, i"" i Jc-'q;, i = l ,  2, . . e ,  2n 
T; qM(eo)X: + GR (e,)] 

(31) 

and 

m~=B;1(hiI,n-Aa)Ts-'[M(0,)h~+GR(80);9~-'qi, 

i = l ,  2, - e . ,  2n.  (32) 

The first 2n members of ui are the same as u;. From - 
A )  -B]:  

L(siI3n3n-A) -4 

S;Inn - Inrz  on, 
= 111- '(00) GR (00) SiInn - M -  ' (60) T ,  Ofln On, . io Onn SiIm -A, - Ba 

(33) 

Substitating for - A)  - B)] from (33) when Si = h;, 
and ui and mi from equations (31) and (32) into (27), shows 
that (UT mT) is in the null space of - A )  - B].  In 
fact, we arrived at (31) and (32) by obtaining the right null- 
space of [ ( s ; I ~ , ~ ,  - A )  - B)] .  This substitution shows that u;, 
which is given by (31), is achievable. Since u;(i = 1, 2, . . * , 
2n) must  be in the right null space of [(Xi13,3n - A )  - B ] ,  then 
no option would remain in constructing the last n members of 
ui if the first 2n members OF ui are constructed like u;. 

2) Actuator Eigenstructure: We offer a similar treatment 
for the actuator eigenvalues and their corresponding right 
eigenvectors. The actuators in the manipulators are dynami- 
cally uncoupled. It is a good practice to preserve this 
uncoupling in the dynamics of the actuators in  the closed-loop 
case, too. The uncoupling of the closed-loop actuator dy- 
namics allows the designers to achieve different bandwidths 
for actuators such that they are consistent with their hardware. 

It has already been mentioned that U2, is the significant 
partition of U2. To achieve the uncoupling of the actuators, 
U2, is chosen to be  an identity matrix. Since each right closed- 
loop eigenvector is confined to an n-dimensional subspace in 
3n-dimensional space, constructing U2 such  that U22 = I,, is 
always possible. At this stage, we have not  mentioned where 
the y1 actuator closed-loop eigenvalues must  be located. This 
will depend on the stability robustness specifications. Section 
111-C is devoted to this matter. For continuity in all material 
concerning the design of G, readers can assume that the 
closed-loop eigenvalues of the actuators are located deeper in 
the left complex plane than any complex number offered by A. 
At this point, it does not matter how far from the origin these 
eigenvalues are located Section 111-C clarifies how a designer 
can use the freedom of  choosing the closed-loop eigenvalues of 
the actuators to satisfy the robustness specifications. If mi = 
- Cui, (22) can be written as 

i = 2 n + l ,  2 n + 2  - . e ,  3 1 2 .  (34) 

Let 

u22=(g,,  g27 * * x  gn) (35) 

where gi is a n x 1 vector and U2, = I,,,. If ui and mi are 
selected according to (36) and (37) 

i = 2 n + l ,  2n+2,  e - . ,  3n (36) 

mi=B;'(siI,,-Aa)gi, i = 2 n + l ,   2 n + 2 ,  * * . )  3n 

(37) 

then substituting u; and mi from (36)  and  (37) into (34) and 
[(siIjn3, - A)  - B] from (33) into (34) shows that (UT m')' 
is in the right null-space of [ ( s J ~ , ~ ~  - A )  - B]. This shows 
that u;, which is given by (36), is achievable. The last n 
members of ui are like gi, which guarantees the uncoupling of 
the closed-loop actuator dynamics. Note that the inverse of 
[A4(O0)s; + GR(OO)] always exists as long as s, is  not  equal to 
any eigenvalues of A. One can always multiply u; by 
[M(S,)s; + GR(00)] to ease this condition. Since u;(i = 2n 
+ 1, 2n + 2 . . . , 3n) must be in the right null space of 
[(s;13n3n - A )  - B ] ,  no  option  would remain in constructing 
the first  2n members of ui, if the last n members of ui are 
constructed like vi. 

3) Computation of G: Once the mi and u; are computed 
from (31), (32), (36),  and (37), then (30) can be  used  to derive 

C =  -[ml,  m2, . * a ,  m 3 n l [ U l ,  u2, . * . ,  ~ 3 n l V l  (38) 

or equivalently 
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for G. Equation (39) requires that U, given by (25), is a full 
matrix. Since the target dynamics are simple3 [ 5 ] ,  [13], [lo], 
then VI,, which is equal  to V, is a full rank matrix. This means 
that U, is a 2n-rank matrix. Matrix V2 must be  constructed 
such  that (VI U2) is a full-rank matrix. 

However, since there is freedom in the selection -of the 
eigenvalues and eigenvectors of the actuators, one can always 
use  this freedom to modify U2 such  that (VI U2) is a full-rank 
matrix. We  do not give a general  procedure to construct U2 
such  that (U, U2) is a full-rank matrix. Here we prove that if 
all closed-loop  eigenvalues of the actuators approach infinity 
at  any angle in the left half complex plane, then U is a full rank 
matrix. It  can be verified that as actuator eigenvalues  approach 
negative large numbers,  each of the upper  2n  members of  each 
right eigenvector in (36) approaches a small number, while  the 
last n members stay constant. This implies that the members of 
Ui2. of matrix U in (25) will be much smaller than UZ2. 
Suppose (U, U2) is  not a full-rank matrix, then there exists at 
least one  column in U2, which belongs to the column space of 
Ul (VI is a full-rank matrix)  as  eigenvalues of  the actuators 
approach infinity at any angles in  the  left  half  complex plane. 
Since, in the limit, all members of U,, are  almost  zero, this 
leads to the dependence of the columns of Utl. This is a 
contradiction because Ul1 is a full-rank matrix. The  above 
discussion only guarantees the existance of U-I when all the 
eigenvalues of the actuators approach infinity  in a stable sense. 
In practice, we  plan to locate the actuator eigenvalues  deeper 
in  the left-half complex  plane than  any complex number 
offered by A. If U is a full-rank matrix, then U-I can  be 
computed as 

( ru1,- U 1 2 ~ & ' ~ 2 1 1 - ~  

- U , ' ~ 2 1 [ ~ , , -  U12~&~U211-' 

Note  that  we do not consider the independence  of the columns 
of U as a  condition for the achievability of the target 
impedance.  This is because  one can always  use the freedom in 
choosing the eigenvalues of the actuators to construct U2 such 
that (U,  U2) is full rank as long  as VI is a full-rank matrix, 
which  will  be true if the target impedance is simple. Since U 
and S are self-conjugate, then G will always be a real  matrix 
(15). Knowing the requirements for the independence  of the 
right eigenvectors of the target dynamics, we  can write 
explicitly the only set of formal conditions that guarantees the 
structure of the target dynamics will be mathematically 
achievable: J ,  C, and K must be nonsingular, and  the target 
dynamics must  be simple (V  must  be a full  rank matrix.) 

B. Force-Feedforward Design 
The  previous section provides  a method for designing  the 

state-feedback gain G to  guarantee the eigenstructure of  the 
target dynamics  given by A and V. Assuring that the 
eigenstructure of the target dynamics is achievable  does not 
imply  that the target dynamics given by (1)  can  be achieved. 
The following theorem  formally states the conditions under 

The impedances that always yield a complete set of right eigenvectors are 
called simple. 

which a designer  can  guarantee that the system will  follow the 
target dynamics,  given by (l), governing the closed-loop 
behavior of the manipulators for all 0 < w < wb. (0, wb) is  the 
bounded frequency  range in  which the system  may operate. 

1) Theorem: The state-space representation of the dynamic 
system given by (12), with state-feedback gain G and force- 
feedforward  gain Gd, is given by 

6k( t )  = ( A  - BG)GX(t) + (L -t BGd)SD( t ) ,  

G = n x 3 n ,   G d = n x n  (41) 

S8( t )  = HSX( t )  (42) 

where M(t) and SD(t) E W". The  closed-loop transfer- 
function matrix that maps S D ( j w )  to S8(jw) is  given by 

Gc/(jw)=H(jwI,,,,-A  +BG)-'(L+BGd) (43) 

where M ( j w )  = Gc~(jw)GD(jw). Suppose all actuator 
closed-loop  eigenvalues  are selected to satisfy the inequality 

Is i l>p,  real (si)<(), i = 2 n + l ,   2 n + 2 ,  . . * ,  3n 

(44) 

where p is a positive scalar. If p .approaches 03, and if G is 
designed according to Section III-A to guarantee the target 
eigenstructure V and A for the closed-loop  system, then a 
unique value fo; G d  can  be  obtained such  that limit (45) is true 

~~ 

for all w in the bounded interval (0, Cob). Thus 

lim J,G,[(jw) = C,(jo). (45) 

This  theorem  does not prescribe any value for Gd. It justifies 
the conditions under which limit (45) is true for all 0 < w < 
w b  without regard to stability robustness. According to this 
theorem the satisfaction of inequality 44 when p approaches 00 

and  the selection of G such  that I/ and A are  guaranteed, 
ensure  a  unique value for Gd that leads to (45) for all 0 < w < 
wb. The detailed proof is not  given here  because it is  lengthy 
although straightforward. Gcl(jw) can be expanded in diadic 
form [ll] to  show the contribution of  the  dominant  modes 
(presented by A) and the modes  of the actuators of the closed- 
loop system. It can be shown that as p approaches 00 the terms 
resulting from the actuator modes approach  zero while  the 
remaining  terms  approach G,( j w ) .  

2) Computation of Gd: Theorem  4.2.1 can  be  used to 
compute Gd. Since, for fast actuator eigenvalues  a unique 
value for Gd guarantees that limit (45)  is true for all 0 < w < 
wb, limit 45 can  be  used to  compute Gd at some  frequency  in 
the  bounded interval (0, Ob). Assume w = 0 and all 
eigenvalues of the actuators are located in the left half complex 
plane farther than  any complex  number given by A. Then  from 

P-m 
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limit (45): 

J c  G,, (0) = Gt (0) (46) 

where G,,(O) = H ( - A  + BG)-IL, and G,(O) = K-I .  K i s  
nonsingular and Lp = (L + BGd). Substituting for G,!(O) and 
G,(O) in (46) results in 

J,H(-A+BBG)-'L,=K-'. (47) 

Assume that G = [GI C2 G3], G1 = n x n, G2 = n x n ,  
G3 = n X n. Then G d  can be computed from (47) as follows: 

Gd = [( G3 + Inn) T,-'GR (00) + GI] J, 'K -  

- ( G3 + Inn) T,- J,'. (48) 

3) Summary of the Design Method: The following four 
steps can be used to design the feedback and feedforward gains 
for a given 00. 

a) Use (31) to compute the 2n closed-loop eigenvector ui 
associated with the dominant modes. Use (32) to compute mi, 
(i = 1, 2, - 0 ,  2n), which identifies the location of ui in its 
allowable sub-space. qi and X; are given by (3). This 
terminates the construction of the dominant modes. 

b) Use (36) to compute the n closed-loop eigenvector ui 
associated with the actuators. Use (37) to compute mi,  (i = 2n 
+ 1, 2n + 2, 0 . , 3n), which identifies the location of ui in 
its allowable subspace. This terminates the construction of the 
nondominant modes. 

c) Use (38) to compute the state-feedback gain G. The first 
n x n partition of G is the joint-angle feedback-gain while the 
second and the third n x n partitions of G are the velocity and 
torque feedback-gains. 

d) Use (48) to compute the force-feedforward gain. 
4) Selection of the  J-Matrix: If the conditions of the 

theorem are satisfied, a unique value for Gd can be found such 
that limit (45) is true for all 0 < w < wb. In proving Theorem 
111-B- 1, one can show that selection of the J-matrix according 
to 

J = Jc- 'M(00) J ;  (49) 

will result in G d  = 0. This simply means  that if the target 
inertia J is chosen according to (49), then no force measure- 
ment is needed to achieve the target dynamics of the theorem. 
This result is significant, since force measurements are not 
available for many commercial manipulators. The force 
measurement can be eliminated if the desired frequency range 
of operation wo is small enough that it can be parameterized by 
choosing J according to (49). We do not prescribe a unique 
value for the J-matrix to parameterize wo. In fact, there exist 
an infinite number of matrices that can be selected for J to 
parameterize wo. The size of J is important, not  its structure. 
(One can consider the size of the J-matrix in terms of its 
singular values.) Here, we summarize some options for the J-  
matrix. One method is given in Part I of this paper by 
considering J = y lK.  A designer can also choose the J-matrix 
to  be yI,,,, where y is a positive scalar. Equation (49) 
motivates us  to use (50) to select matrix J. Thus 

J= y J,- 'M(0,) Jcr (50) 

where y is  a positive scalar. Choosing J according to (50) has 
the advantage of consistency with the natural behavior of the 
manipulator because J; TM(O~) J;' is the manipulator inertia 
matrix in the global coordinate frame. y in (50) scales the 
natural inertia of the manipulator equally in all directions. 
Note that when y is not  unity  in equation (SO), Gd will  not  be 
zero. 

C. Stability Robustness and the Eigenstructure of the 
Actuators 

In this section we arrive at a design parameter for stability 
robustness. Given a nominal model, G,( jw) ,  in (15), an error 
function E ( j w )  is given according to (16) to represent the 
uncertainties in,the system. If the state-feedback gain G is used 
to stabilize the nominal model G,(jw), then the real  model 
G d ( j w >  will also be stable if inequality (51) i s  satisfied: 

on,in[ Go(jw)] > e(w) for all 0 < w < 00 (51) 

where 

G,(jo)=I, ,+[G(jwI~:, , , , -A)-]B]-'  

and e(w) 2 umin [ E  ( j w ) ] .  References [18] and e141 leisurely 
explain this concept in greater depth. The objective is to design 
G so that inequality (51) is satisfied. The closed-loop 
eigenstructure of the n actuators is the only freedom left in the 
design of G. The theorem of Section 111-B-1 states that if' all 
the closed-loop eigenvalues of the actuators approach - c o ,  
then the target dynamics represented by (1) can  be achieved 
for all 0 < w < wb. Placement of the closed-loop actuator 
eigenvalues deep in the left complex plane is  not trivial. A 
trade-off must occur between performance through a wide 
frequency range and stability robustness. 

Suppose the closed-loop eigenvalues of the actuators are 
located at ahul, aXu2 * e ,  ah,. Scaling all closed-loop 
actuator eigenvalues to one number preserves bandwidth ratios 
for the actuators that are consistent with the hardware. Fig. 3 
shows that the farther from the origin the n closed-loop 
eigenvalues of the actuators are located, the larger will  be 
G ( ~ w I ~ ~ ~ ~  - A )  - 'B .  Large values for these eigenvalues shift 
G( - A )  - [ B  up. This is true only  when the closed- 
loop actuator eigenvalues are located much farther from the 
origin than  any complex number offered by A .  Since closed- 
loop actuator eigenvalues that are far from the origin result in a 
large G( jw13n3n - A ) - ' B  for  a wide frequency range, 
inequality ( 5  1) may  not  be satisfied for all 0 < w < 00. This is 
true because a large G( ~ w I ~ ~ ~ ~  - A )  - I B for a wide 
frequency range allows Co( jw)  to remain very close to  unity 
for a wide frequency range, which may, in turn, cause a 
violation of inequality (51) if e(w) does not also remain close 
to unity for a wide frequency range. On the other hand, 
according to the theorem in  Section 111-B-I, the larger a is 
selected to be, the closer J,G,l(jw) will  be to G , ( j w )  for all 0 
< w < wb. So the closed-loop actuator eigenvalues must  be 
placed  in the left half complex plane as far as possible without 
violating the stability robustness specification. In selecting a ,  
G o ( j w )  must preserve stability robustness specifications at all 
frequencies. We  do not offer any value for a;  it is the 
designer's choice. Selecting a good value for a requires 
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3 

Fig. 3. om, and u,in of G ( j ~ d 3 " ~ ~  - A)-'Bfor various  actuator  closed-loop 
eigenvalues. 

experience and an  understanding of the system. CY must  be 
large enough to guarantee that the performance specifications 
will  be met, but small  enough  to  guarantee that the stability 
robustness specifications will also be fulfilled. The  theorem of 
Section III-B-1 clarifies  how a large CY can guarantee the 
performance specifications for a bounded frequency range. 

The  parameter in the set of performance specifications that 
can be altered most effectively to  meet the stability robustness 
specifications is wo, the frequency range  in  which the 
relationship between interaction force and displacement is 
approximately  independent of frequency. 6D(jw) = 
K6Y(jw). Shaping the loop transfer function G( ~ o I ~ ~ ~ ~  - 
A )  - ' B ,  for all 0 < w < wo, is  the requirement to produce this 
frequency-independent relationship. On the other hand,  one 
cannot  shape G(jw13n3n - A )  - 'B arbitrarily for an arbitrary 
frequency  range  because inequality (51) must  be  satisfied for 
all 0 < w < m . Satisfying inequality (5 1) at low frequencies 
is trivial because of the small size of e(w). At larger 
frequencies, G ( j ~ l , , , ~ ,  - A ) - ' B  must become small to 
satisfy inequality (51). Therefore, the smaller wo is selected to 
be, the more  robustness  to  high-frequency unmodeled dy- 
namics  can  be achieved.  Since wo is parameterized by J, it is 
necessary to consider a larger J (and  consequently a smaller 
WO) as a compromise to meet  the stability robustness specifica- 
tions at high frequencies. Of course, the K-matrix  can also be 
altered to change wo. The  following  summarizes the effects of 
wo and CY on stability robustness. 

More  stability Less stability 
Increasing wo or a -+ robustness  in --+ robustness  in 

uncertainties  of the high-frequency 
modeled  dynamics  unmodeled  dynamics 

Less stability  More  stability 
Decreasing wo or CY - robustness  in 4 robustness  in 

uncertainties of the  high-frequency 
modeled  dynamics  unmodeled  dynamics 

IV. EXAMPLE AND EXPERIMENT 
A .  Example 

Consider the planar  manipulator with  two degrees of 
freedom  shown in Fig. 4. Both  of  its joint angles  are  powered 
from the stationary base. The  second link is driven by an 

actuator on the base via a relatively stiff chain. The  mass, 
length  and  moment  of inertia of each link are  represented by 
ami, 6xi, and ii. The variables il and i2 are the moments  of 
inertia of the links relative to their end-points. locates the 
center of mass of the second link. The inertia and Jacobian 
matrices are 

Substituting the numerical values for each variable in the 
inertia matrix and the Jacobian  matrix gives 

2.72E - 02 
7.7E-03 

7.7E- 03 
7.44E - 03 

Jc= ( 1 -5.05E-01 -6.48E-1 
8.66E-1 6.486- 1 * 

Since the manipulator is mounted horizontally, gravity does 
not affect it. The actuator driving 6' has a bandwidth  of 8 rad/ 
s, while  the other actuator has  a bandwidth of, 10 rad/s.  The 
actuator dynamics  can  be  expressed by matrices A ,  and B, 
according  to ( 1  1). Since e2 is  not  the relative angle between  the 
two links and since the actuators are powering the system  from 
a stationary base, T, = I,,, in (8 )  

&=( - 8  0 -10 O ) B*=(o 8 0  l o ) .  

A ,  B ,  and H in (13) and (14) can  be written as 

0 0 1 0  0 0 
0 0 0 1  0 0 
0 0 0 0 5.19E+ 1 -5.38B+1 
0 0 0 0 -5.38E+1 1.9E+2 

0 0 0 0  0 
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2 1  

Em, - .7464/32.2 Ibf.sec2 /ft 

6x2 - ,91667 f t  
6x1 - 1 ft 

12- ,0074381 lbf.ft.sec2 
I, - ,00403 mf.ft.sec* 

612 - ,34375 ft 
e,-300 
ez - 450 

Fig. 4. Manipulator  with  two degrees-of-freedom. 

H =  - 

0 
0 
8.87 
.96.32 - 
0 
0 

H =  ( 
0 1 0 0 0 0 ‘  ) 1 0 0 0 0 0  

The designer must provide not  only the nominal model for the 
manipulator but also the bound for the uncertainties e(w). The 
model uncertainty for this example is given by e(@) in Fig. 1. 
e(w) takes the value of 0.4 at  low frequencies and rises to 2 at 
35 Hz. The first unmodeled mode  that represents a bending 
dynamic of the manipulator takes place at 35 Hz (220 radis) 
with e(220) = 2. The large magnitude of e(w) at 220 radis 
shows that the unmodeled mode is under-damped. Most space 
manipulators have under-damped structural modes. The large 
values for e(@) at high frequencies for under-damped unmo- 
deled modes force designers to design low-bandwidth systems 
to avoid possible instabilities. According to this  model 
uncertainty, the dynamic model is nearly  valid for an 
approximate range of 10 Hz. 

The design specifications in the global Cartesian coordinate 
frame are 

1) stiffness in the X-direction = 0.615 lbfift, for 0 < w < 

2) stiffness in the Y-direction = 12.3 lbfift,  for 0 < w < 
6.283 rad/s (1 Hz) 

6.283 radis. 

Note  that the desired frequency range of operatian is selected 
within the range for which the model is  nearly valid. The 
stiffness ratio is about 20. The low stiffness in the X-direction 
generates a  “soft” positioning system for the end-point along 
the X-direction, while a  larger stiffness in the Y-direction 
guarantees a relatively “stiff” positioning system in that 
direction. Note that the natural behavior of the manipulator in 
the configuration shown in Fig. 4 opposes the desired 

~~ ~~ ~~ . ~. . . ~ ~ ~  ~~~ 

2.73 2.73 2.73 
-3.65 -3.65 -2.10 
- 34.48 - 53.88 - 44.51 
46.07 71.98 34.34 
7.37 17.98 15.43 

- 0.97 - 2.38 1.42 

U =  

performance specification. In other words, the inertia of the 
manipulator in the global Cartesian frame J; TM(Oo)J; 
makes it much easier to keep the manipulator “softer” in the 
Y-direction than in the X-direction. The following diagonal 
target dynamics are proposed to order the design specifications 
into parameters: 

.-( -61 (I ) 
0 12.3 

c= (7.99:-2 0 ) 
1.24 

2.97E-2 

The diagonal inertia matrix and the diagonal damping matrix 
are selected such that the stiffness value for each direction 
guarantees the desired behavior within a frequency range of 
6.283 radis. Note that since we choose a diagonal target 
dynamics, selection of 9- and C-matrices for a given K-matrix 
is trivial. We choose each member of C and J such that, at 
each direction, a slightly over-damped, stable, second-order 
impedance results. The transfer function of the target dy- 
namics G,(s) is 

/ 1.625 1 
(s/12.62+  l)(s/19.72+ 1) 

.OS12 
1 

(~116.29 + l)(s/25.46 + 1) 
Fig. 5 shows how the equation that expresses the target 
dynamics of the system, G,(s) = (Js2 + Cs + K )  - - I ,  

represents the desired stiffness values and frequency range of 
operation. The eigenstructure of t?e target dynamics can be 
represented by V and A: 

A = {  -12.62, - 19.72,  -16.29,  -25.46) 

2.73  2.73  2.73  2.73 
-3.65  -3.65  -2.11  -2.11 ‘=[ -34.48 -53.88 -44.51  -69.55 . 
46.07  71.98  34.34  53.65 

For a = 5, the closed-loop eigenvalues of the actuators are 
located  at - 40 and - 50. This preserves the bandwidth ratio 
of 8/10 for the actuators. The set of closed-loop eigenvalues S 
is given by S = { -  12.62, - 19.72, - 16.29,  -25,46, - 
40., - SO.} .  Using (31) and (36), U can  be computed to be 

2.73 3.25E-2 -2.15E-2 
-2.11 -3.26E-2 7.6E-2 
- 69.55 - 1.30 1.07 
53.65 1.34 - 3.80 
37.67 1 0 
3.47 0 1 
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Fig. 5. Target dynamics G, ( jw ) .  The numbers in the paranthesis  indicate 
the row and  column of each member of the matrix, respectively. 

Note  that the first 4 x 4  members of U are identical to V, 
Equations  (32) and-(37) can be used to compute mi(i = 1,  2, 
- - - , 6)  as follows: 

-4.25  -26.35 - 15.99  -82.20 - 4  ( 0.25  2.31  -0.89  -5.36 0 - 4  O )  * 

The state-feedback gain G and force-feedforward gain  can be 
computed  via (38) and  (48).  Thus 

G = (  ) 70.23 36.21 8.08 3.53 8.69 3.49 
13.94 12.45 1.78 1.63 0.08 7.66 

Gd= ( 104.09 - 1.27 
- 6.31 - 4.72 ) 

The size of a is limited by the stability of robustness 
specifications. Fig.  6  shows that large values for a will  lead to 
a violation  of  the stability robustness specifications of (51) for 
a = 10 and  meets the stability robustness specifications for a 
= 5 .  Large  values of a result in large G, which leads to large 
values of G ( s ~ ~ ~ ~ ~  - A )  - l B .  Fig. 7 shows the closed-loop 
transfer function JcGc/(s) for various values  of a. The larger a 
is selected to be, the closer the closed-loop transfer function 
JcGcl(s) will  be to G,(s) for a bounded frequency range. For 
small  values of a,  the members of JcGc/(s) will exhibit strong 
coupling; therefore, satisfaction of the performance specifica- 
tions is not guaranteed at low frequencies. On  the other hand, 
large values  of a result in a trivial coupling  between  the 
members of JcGcl(s) at low frequencies (as  long as G o ( j w )  = 
13n3n + [G( jw13n3n - A )  - ' B ]  - ' does not  violate the stability 
robustness specifications). Even though a large a ensures 
better performance,  it  produces large values for the state- 
feedback  gain G and the force-feedforward  gain Gd. The 
transfer function matrix JcGcl(jw) is as  follows for a = 5: 

Fig. 6. u,,, and urnin of G,(jw) for CY = 5 and CY = 10 

77 
aJ 
3 

c m 
c .- 

P 

(b) 

Fig. 7. Closed-loop transfer function matrix J,G,,(jw). 

(s/310+  l)(s/46+ 1) 
(s/12.62+  l)(s/19.72+ 1) 

s(d65.8 + 1) 
(s/16.29+  l)(s/25.46+ 1) 

-4.28E- 3 

- 4.42E-  3 
s(s/41+ 1) 

(d12.62 + 1)(s/19.72 + 1) 

( d 3 2  + l)(s/37 + 1) 
(s/16.29+  1)(s/25.4+ 1) 

0.0812 
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The off-diagonal members of J,CCl(jo) for 01 = 5 are much 
smaller tinan the diagonal members and therefore,  the plot  of 
J,G,,(jw) in  Fig. 7 resembles the target  dynamics  in Fig. 5, 
for all 0 < w < wo. 

B. Experiment 
A simple experiment is described here to show  how 

impedance control can be employed to develop  compliancy  on 
a planar positioning  table. This experiment also  points out the 
difference between employment of  impedance control and 
admittance control in  constrained maneuver. The positioning 
table  consists  of  a platform driven by two DC motors via two 
lead-screw  mechanisms (Fig. 8). The goal of the overall 
project  is to develop a  positioning  system  with  different 
stiffnesses  and different bandwidths along the two axes  of  a 
global  Cartesian coordinate frame by an on-line computer. The 
axes of this global coordinate frame  do not  necessarily 
coincide  with the axes  of the motors. In  this section, we are 
interested  in  observing the transient  behavior  of  the table from 
unconstrained maneuvers to constrained maneuvers  when (I)  
is guaranteed for the system. To show this transient behavior, 
we describe the  result  of  an experiment when only  one  axis  is 
employed  (one  dimension case).  Fig. 8 shows this simple set- 
up. A wide bandwidth force sensor i s  mounted on the  platform 
to measure the  contact force along two orthogonal  directions 
161 ' 

A computer algorithm  with 0.01-s sampling  time  was 
designed  and  implemented  on  a  microcomputer to develop 
compliancy on  the  table  as in (1). The controller  is  able  to 
accept the  stiffness, bandwidth  and  damping  .coefficient  (three 
items  of  the  set  of performance specifications  given  in Part one 
in  addition to the  set-point  position-command. The platform 
was commanded to move  beyond  a  solid surface.  Fig. 9(b)  is 
the periodic ramp position command generated by the com- 
puter to  the system. Fig. 9(a) is the  contact force.  For this 
experiment, K is chosen to  be 3.5 lbflin while  the  bandwidth 
of  the  system  is 4 Hz. As long as the  force sensor is not  in 
touch  with the stiff wall,  the contact force is zero. After  the 
force sensor  touches the stiff wall, the  contact force increases 
proportionally to  the commanded input  position [6D(t) = 
K6Y(t)). Since the  input  position command is a ramp function, 
the contact force is also a ramp function. 

Note  that  we have a  positioning system for the table that has 
the ability to modulate  the  impedance  of  the  system.  In  other 
words, it  accepts  a  set-point  position,  and it reflects  a force  as 
output.  We do not  command any set-point force  as we do in 
admittance control. By assigning  various  position commands 
and by maintaining complete control on ( X ) ,  we can keep  the 
contact force in  a desired range. 

CONCLUSION 

The target impedance  mandates  a  closed-loop  relationship 
between the interaction  loads  and  the  motion of the system  in 
the  global  Cartesian coordinate frame. In general,  the closed- 
loop behavior  of  a  system  cannot  be  shaped  arbitrarily over an 
arbitrary, bounded  frequency range. However, we  show  that 
this  target impedance is  mathematically achievable, and  in 
Section 111 we offer a geometrical design  method to achieve it. 

K,W, AND C 

ENCODER LIEASU2EMENT 

FORCE  SENSOR  PLATFORM 

Fig. 8. Planar  positioning  table. 

MOMENT CF C 3 N T A C T  

Fig. 9. (a) Contact force. (b) Commanded position 

By considering the  dynamics  of  the  manipulators  and  its 
actuators. continuous  feedback  and  feedforward  gains are 
given  in  closed form  to guarantee the achievement of the  target 
dynamics  in the presence of  model  uncertainties. 

To achieve the target  impedance  given  by (I) ,  we need to 
measure the  joint  angles,  joint angle rates, actuator torques, 
md  interaction forces of the system. Most  direct-drive 
manipulators are not  equipped  with fast actuators, and it is 
lecessary to consider their dynamics  and to measure  the 
actuator torques (or motor currents) in  the  design  process if a 
wide  frequency  range  of operation i s  needed.  In  Section II we 
develop  a  mathematical  model for manipulators  and their 
actuators  to represent their dynamic behavior during low- 
speed constrained maneuvers. When the  actuators are fast 
(i.e., their  bandwidths are much  wider  than  the  desired 
frequency  range  of operation wo), the  dynamics of the 
actuators can be  neglected,  which  eliminates  the  need for 
torque feedback. If wo is small  enough to be  parameterized by 
the  target  inertia  matrix  given by (49, then force measurement 
can also be eliminated. In other words, if  the  target  inertia is 
selected to be the  inertia of the manipulator in the  global 
coordinate frame, given by (49), then it is not  necessary  to 
measure the interaction forces.  We use force-feedforward  only 
to change the inertia  of the system.  If  the  actuators are fast and 
the  frequency range of  operation is small  enough  that  the  target 
inertia  can be chosen according to (49), then  it is necessary to 
measure  only  the joint angles  and joint angle rates. 

Stability  in the presence of model  uncertainties is another 
significant  issue  in our design  method. Large feedback  gains 
produce poor robustness to high-frequency  unmodeled dy- 
namics  and good robustness to uncertainties  within  the 
modeled dynamics. Selecting a wide wo will produce a large 
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feedback gain, which  means the system will  be less robust to 
high-frequency  unmodeled dynamics and more  robust to 
uncertainties in the modeled dynamics. On the other hand, a 
narrow oo will result in a small state-feedback gain, which  will 
assure  good  robustness to high-frequency unmodeled dy- 
namics.  Since oo is parameterized by J ,  we can state that for a 
given K ,  a small J-matrix may cause instability in the presence 
of high-frequency  unmodeled dynamics, and a large J-matrix 
may cause instability if there are uncertainties in  the  model at 
low frequencies. 

The trade-off between  the size of the target inertia and 
stability robustness relatiye to  high-frequency  unmodeled 
dynamics is another contribution of  this paper. Another factor 
in  the size of the state-feedback gain is a, which  measures the 
locations of the closed-loop  eigenvalues of the actuators. The 
farther from the origin the n closed-loop  eigenvalues of the 
actuators are located, the larger the feedback gain matrix G 
will be. In other words,  wide  closed-loop bandwidths of 
actuators result in less robustness to high frequency unmo- 
deled  dynamics. 
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